مقدّمه
فارابی روش بدیعی را در اثبات وجود خدا پیشنهاد کردکه در واقع اثبات واجب از طریق وجود واجب است. گویا در این برهان از خود واجب آغاز می کنیم و سرانجام وجودش را نتیجه می گیریم؛ زیرا برهان را از وجود آغاز می کنیم که اعم از واجب است و در فرجام کار روشن می شود که آنچه بدان رسیده ایم، همان است که از آن آغازکرده ایم و آن، همان وجود خداست؛ زیرا در پایان کار برای ما روشنمی شود که خدا وجود دارد، در حالی که وجود خلق از آن نتیجه نمی شود. بنابراین روشن می شود که از خدا آغاز کرده ایم و به خدا رسیده ایم. ابن سینا روش ابداعی فارابی را برای نخستین بار درباره موجود به کار برد و نخستین تقریر برهان صدیقین را ارائه کرد. این برهان بهگونه ای است که می توان آن را به روش منطق جدید به خوبی سامان داد، و استدلال آن را به روش صوری گزارش کرد. در صورت بندی برهان صدیقین به روش سینوی، هم می توانیم صرفاً از منطق جمله ها استفاده کنیم و هم می توانیم از منطق محمولات بهره بگیریم.
صورت بندی برهان بر اساس منطق جمله ها
در سازمان دادن این برهان بر اساس منطق جمله ها از دو قانون استنتاجی وضع مقدم و حذف فاصل استفاده می کنیم. پیش از آنکه این دو قانون معرفی شوند، بایسته است نمادهایی که در معرفی این قوانین و در برهان ها به کار می روند، معرفی شوند: نماد شرطی؛: نماد استنتاج؛: نماد منفصله؛C, B, A: جمله نشانه ها در فرازبان منطق جمله ها برای معرفی قانون ها؛R,Q,P: جمله نشانه ها در زبان منطق جمله ها. قانون وضع مقدمA Bبه موجب این قانون از دو مقدمهA B و A میتوان B را نتیجه گرفت. این قانون همان قیاس استثنایی با وضع مقدم در منطق قدیم است.
قانون حذف فاصل
به موجب این قانون هرگاه با فرض هریک از مؤلفه های منفصله به یک نتیجه برسیم، معلوم می شود که نتیجه از خود منفصله به دست می آید و نتیجه بر همه مقدمات پیشین به جز دو فرض مزبور استوار است. به تعبیر دیگر، اگر به راستی با فرض A به C می رسیم و با فرض B به C می رسیم، پس با داشتن AB به C می رسیم و C نه به A مبتنی است و نه به B، بلکه به AB. قانون حذف فاصل هر چند بدیهی است، نشانی از آن در منطق قدیم نمی بینیم. گفتنی است که نام گذاری این قانون به حذف فاصل چندان مناسب نیست؛ زیرا در این قانون فاصل حذف نمی شود، بلکه در سطری که این قانون اعمال می شود و نتیجه به دست می آید، آن را به فاصل مرتبط می کنیم و این قانون بیان می کندکه از فاصل به این نتیجه رسیده ایم. به هر حال نام گذاری چندان اهمیتی ندارد؛ بلکه مهم درستی قانون است که عقل به گونه بدیهی درستی آن را شهود می کند.
تقریر برهان صدیقین ابن سینا بر اساس منطق جمله ها
همان گونهک ه گفتیم،در برهان صدیقین، بنابر ادعا، وجود خدا از فعل و خلق او استنتاج نمی شود. بنابراین در این برهان باید از عناوینی استفاده شود که مصداق آنها در واقع فعل و خلق او نباشند. به ناچار این عناوین باید خود واجب باشند و لذا می توان گفت که ویژگی برهان صدیقین این است که با واجب، واجب اثبات می شود؛ بدون آنکه در دام مغالطه مصادره به مطلوب گرفتار شویم. ازآنجاکه هدف در اینجا ارائه صورت بندی برهان صدیقین، صرف نظر از مبانی آن است، اصول موضوعه مقدمات برهان را صورت بندی نمی کنیم. خواجه نصیرالدین طوسی در شرح اشارات و تجریدالاعتقاد برهان صدیقین ابن سینا را بر امتناع دور و تسلسل مبتنی کرده است. بنابراین در تقریر خواجه بطلان دور و تسلسل اصل موضوع است که بطلان آن دو در مابعدالطبیعه اثبات شده است؛ اما درخور توجه آنکه ابن سینا برهان خود را بر امتناع دور و تسلسل بنا نکرده است؛ بلکه مبنای برهان ابن سینا امتناع مجموعه های محدود یا نامحدود از ممکنات است که در ورای خود، واجبی نداشته باشند. به تعبیر دیگر، مبنای ابن سینا لزوم وجود واجب الوجود، بیرون از مجموعه های محدود یا نامحدود ممکنات است. بنابر بیان ابن سینا اگر مجموعه ای از موجودات امکانی، خواه محدود و خواه نامحدود، به هم وابسته در نظر گرفته شوند، این مجموعه در صورتی موجود است که بیرون این مجموعه واجب الوجود آنها را موجود کرده باشد؛ وگرنه موجود نخواهند بود.
ازآنجاکه خواجه نصیرالدین طوسی بر مبنای امتناع دور و تسلسل برهان ابن سینا را بسیار موجز به تقریر در آورده است، آن را در اینجا بیان می کنیم: «الموجود ان کان واجباً فهو المطلوب والا استلزمه لاستحاله الدور والتسلسل». بیان تقریر خواجه این است که موجود یا واجب است یا مستلزم واجب؛ زیرا اگر موجود واجبباشد، واجب الوجود موجود است و اگر موجود غیرواجب باشد، ممکن خواهد بود و هر ممکن الوجودی به دلیل بطلان دور و تسلسل نیازمند واجب است؛ بنابراین اگر موجود غیرواجب باشد، مستلزم واجب است. پس واجب، موجود است. مراد از «الموجود» در کلام خواجه نصیر طوسی همان موجودی است که همگان بدان اعتراف دارند و با آن سفسطه در هستی را نفی می کنند. به تعبیر دیگر برهان از این امر بدیهی آغاز می کند که موجودی هست و این موجود به حکم عقل، یا واجب الوجود است، یا ممکن الوجود. بنابراین در صورت بندی و توضیحاتی که ارائه خواهیم کرد، مراد ما از موجود، همین موجودی است که نافی سفسطه در هستی است.
تفصیل برهان:
1.موجود یا واجب است یا ممکن؛ (بدیهی)
2.اگر موجود واجب باشد، واجب الوجود موجود است؛ (بدیهی)
3.اگر موجود ممکن باشد، واجب الوجود موجود است؛ (بدیهی بر اساس بطلان دور و
تسلسل یا مجموعه های امکانی)
4.موجود واجب است؛ (فرض)
5.واجب موجود است؛ (از 4 و 2 وضع مقدم)
6.موجود ممکن است؛ (فرض)
7.واجب موجود است؛ (از 6 و 3 وضع مقدم)
8.واجب موجود است؛ (از 1، 4، 5، 6 و 7 حذف فاصل)
در این برهان مقدمه اول بر اساس اصل امتناع تناقض صادق است؛ زیرا به موجب این اصل، هر وجودی یا واجب است یا واجب نیست؛ یعنی ممکن است. مقدمه دوم نیز به گونه بدیهی صادق است. مقدمه سوم نیز صادق است؛ زیرا اگر وجود، ممکن الوجود باشد، نیازمند علت است؛ زیرا ممکن الوجود آن است که به ذات خود موجود نیست و چیزی که به ذات خود موجود نیست، باید از ناحیه علت خود موجود باشد و ازآنجاکه علت ممکن به موجب امتناع دور و تسلسل در علل به واجب می انجامد، لازمه ممکن الوجود آن است که واجب الوجود موجود باشد.
اکنون برای اثبات مدعا سطر چهارم را فرض می گیریم. روشن است که نتیجه موردنظر نباید بر این فرض تکیه کند؛ چراکه این سطر جزو مقدمات برهان نیست؛ اما با فرض این سطر و مقدمه دوم، به قانون وضع مقدم نتیجه می شود که واجب الوجود موجود است. البته این نتیجه، نتیجه موردنظر ما نیست؛ زیرا این نتیجه مبتنی بر فرض سطر چهارم است که صرفاً فرض است و درستی آن برهانی نشده است. بنابراین در ادامه برهان، سطر ششم را فرض می گیریم. باز واضح است که نتیجه موردنظر ما هم نباید بر این فرض استوار باشد؛ اما با این فرض و مقدمه سطر سوم به قانون وضع مقدم، نتیجه سطر هفتم به دست می آید که این نتیجه، عین نتیجه سطر پنجم است. همان گونه که سطر پنجم نتیجه موردنظر ما نبود(چراکه بر فرضی استوار بود که درستی اش ثابت نشده است) این سطر نیز نتیجه موردنظر ما نیست؛ زیرا این سطر مبتنی بر فرض سطر ششم است، که درستی اش به اثبات نرسیده است. البته نکته بنیادین اینجاست که فرض سطر چهارم و فرض سطر ششم در واقع دو مؤلفه منفصله در سطر یکم اند. بنابراین به موجبِ منفصله سطر یکم، یکی از این دو فرض سطر چهارم و ششم در واقع درست است. بنابراین یکی از دو نتیجه سطر پنجم و هفتم درست است. پس می توان گفت به موجب سطر اول که منفصله است و دو فرض مزبور که دو مؤلفه همین منفصله اند، نتیجه سطر هشتم که تکرار دو نتیجه سطر سوم و ششم است، به دست می آید. پس با توجه به منفصله، این نتیجه از دو فرض مزبور به دست نیامده اند.
اکنون برهان سینوی را با نماد های منطق جمله ها نمادگذاری می کنیم: P: وجود واجب است؛ Q: وجود ممکن است؛R: واجب الوجود موجود است؛ و.م: وضع مقدم؛ ح.: حذف فاصل.م: مقدمه ف: فرض
در صورت بندی ضمن اینکه هر سطر را با شماره ای در میان دو هلال قرار می دهیم، در سمت چپ سطر، اعدادی که دال بر درستی آن سطرند، به منزله مبنای آن سطر نوشته می شوند. طبق این روش هرگاه سطری مقدمه یا فرض باشد، مبنای درستی آن خودش است و هرگاه سطری از سطر یا سطرهای بالاتر استنتاج شده باشد، اعداد مبنای آن سطرها را به منزله مبنای نتیجه می نویسیم. بدیهی است اعداد مبنای سطر پایانی برهان، تنها باید شماره سطرهایی را به خود اختصاص دهند که مقدمه اند. در این برهان سطر 4 و 6 فرض اندکه با توجه به دو مؤلفه منفصله در سطر یکم، فرض شده اند. هریک از این دو فرض همان چیزی را نتیجه داده است که دیگری نتیجه داده است. بنابراینفرض ها نیستند که نتیجه می دهند؛ بلکه خود منفصله است که 8 را نتیجه می دهد.
این برهان را ساده تر نیز می توان نوشت:
1.یا واجب الوجود موجود است یا ممکن الوجود؛ بدیهی
2.اگر ممکن الوجود موجود باشد، واجب الوجود موجود است؛ (بدیهی بر اساس بطلان دور و
تسلسل یا مجموعه ممکنات)
3.واجب الوجود موجود است؛ فرض
4.واجب الوجود موجود است؛ نتیجه 3
5.ممکن الوجود موجود است؛ فرض
6.واجب الوجود موجود است؛ 2،5 وضع مقدم
7.واجب الوجود موجود است؛ 1، 3، 4، 5، 6 حذف فاصل
گفتنی است که مقدمه 3 (واجب الوجود، موجود است) فرض است و هرگاه چیزی فرض شود بدیهی است که از آن خودش نتیجه می شود؛ زیرا با فرض درستی آن، نقیض آن نادرست است...
می توانیم برهان صدیقین ابن سینا را از راه خلف نیز نتیجه بگیریم؛ هرچند ابن سینا چنین تقریری ارائه نکرده است...
به موجب این قانون از دو مقدمهA B و ~B میتوان ~Aرا نتیجه گرفت. این قانون همان قیاس استثنایی با رفع تالی در منطق قدیم است.
قانون برهان خلف
به موجب این قانون هرگاه از فرض A، B&B استنتاج شود، می توانA را نتیجه گرفت. A بر همان فرضهایی استوار است کهB & B؛ به جز فرضA...
برهان ابن سینا از طریق برهان خلف
1.موجود یا واجب الوجود است یا ممکن الوجود؛ مقدمه
2.اگر موجود واجب الوجود باشد، واجب الوجود موجود است؛ مقدمه
3.اگر موجود ممکن الوجود باشد، واجب الوجود موجود است؛ مقدمه
4.موجود واجب الوجود است؛ فرض
5.چنین نیست که واجب الوجود موجود است؛ فرض
6.چنین نیست که موجود واجب الوجود است 2،5 رفع تالی
7.موجود واجب الوجود است و چنین نیست که موجود واجب الوجود است؛ 4، 6 معرفی عاطف
8.واجب الوجود موجود است؛ 5، 7 برهان خلف
9.موجود ممکن الوجود است؛ فرض
10.چنین نیست که واجب الوجود موجود است؛ فرض
11.چنین نیست که ممکن الوجود موجود است؛ 10، 3 رفع تالی
12.موجود ممکن الوجود است و چنین نیست که موجود ممکن الوجود است؛ 9،11 معرفی عاطف
13.واجب الوجود موجود است؛ 10، 12 برهان خلف
14.واجب الوجود موجود است؛ 1، 4،8، 9، 13 حذف فاصل...
برهان صدیقین بر اساس منطق محمولات
برای تقریر این برهان بر اساس منطق محمولات، از دو قانون اختصاصی منطق محمولات نیز باید بهره گرفت و آن دو را در اینجا معرفی می کنیم:قانون حذف سور کلی(A) t Atmبه موجب این قانون هرگاه حکمی کلی t بر هر شیئی صادق باشد، با حذف سور کلی (A) می توان آن حکم کلی را بر فرد فرضی m پیاده کرد...
به موجب این قانوع هرگاه حکم وجودیtبر شیئی که به مجموعه t تعلق دارد،صادق باشد، و آن حکم بر فرد فرضی ای که به مجموعهt تعلق دارد پیاده شود، و از آن نتیجه ای به دست آید، می توان آن نتیجه را به خود وجودی نسبت داد. در واقع در اینجا نیز مانند قانون حذف فاصل، وجودی حذف نمی شود؛ بلکه نتیجه مبتنی بر آن خواهد شد.گفتی است که همه قواعد منطق جمله ها، در منطق محمولات قابل استفاده اند.
اکنون برهان را بر اساس منطق محمولات تقریر و تنظیم می کنیم. نخست برهان را در زبان متعارفِ متناسب با منطق محمولاتْ تقریر، و سپس آن را بر اساس نماد منطق محمولات تنظیم می کنیم:
1.چیزی وجود دارد که یا واجب الوجود است یا ممکن الوجود؛ (مقدمه)
2.اگر چیزی وجود داشته باشد که واجب الوجود است، واجب الوجود موجود است؛ (مقدمه)
3.اگر چیزی وجود داشته باشد که ممکن الوجود است، واجب الوجود موجود است؛ (مقدمه)
4.چیزی وجود دارد که واجب الوجود است؛ (فرض)
5.واجب الوجود موجود است؛ (2،4 وضع مقدم)
6.چیزی وجود دارد که ممکن الوجود است؛ (فرض)
7.واجب الوجود موجود است؛ (3، 5 وضع مقدم)
8.پس واجب الوجود موجود است؛ (1، 4، 5، 6، 7 حذف فاصل)هرچند سطرهای چهارم و ششم فرضی اند و دلیلی بر اثبات آنها نداریم، ازآنجاکه هریک از این دو، یکی از دو مؤلفه های منفصله اند و این دو دارای یک نتیجه اند، این نتیجه در واقع از خود منفصله به دست می آید...
گفتنی است که وجود و وجوب برای شیئی و نیز وجود و امکان برای شیئی، به این معنا نیست که شیء و وجودش دو چیز باشند و وجود عارض بر آن دیگری باشد و نیز وجوب یا امکان، دو عرض عارض بر آنها باشند؛ بلکه وجوب تأکد همان وجود و امکان ضعف همان وجود است، و به اصطلاح فلسفه اسلامی، محمول وجود و وجوب یا امکان آن، محمول بالضمیمه نیستند؛ بلکهاین ذهن است که بین شیء و وجودش و بین وجود و تأکد یا ضعف وجودش جدایی می اندازد و سپس قضیه حملیه را می سازد.
نتیجه گیری
برهان صدیقین ابن سینانخستین نوع برهانی است که در آن بدون استفاده از فعل و خلق خدا، وجود خدا اثبات می شود. ساختار این برهان، نوعی قیاس ذوحدین است که با توجه به تقسیم عقلی وجود به انفصال حقیقی به ممکن و واجب، وجود واجب نتیجه می شود. این برهان از نظر صورت به گونه ای است که می توان آن را با روش منطق جدید بر اساس منطق جمله ها و منطق محمولات صورت بندی کرد.
منابع
ابن سینا، ابوعلی حسین بن عبدالله، الاشارات و التنبیهات، مع الشرح؛ بی جا، دفتر نشر الکتاب، 1403ق.
طوسی، نصیر الدین، تجرید الاعتقاد، شرح تجرید الاعتقاد، قم، مکتبه المصطفوی، بی تا.
فارابی، ابونصر، فصول الحکم، تحقیق محمد حسن آل یسین، ط. الثانیه، قم، بیدار، 1405ق.
.ابونصر فارابی، فصوص الحکم، تحقیق محمد حسن آل یسین، ص 62.
.نصیر الدین طوسی، شرح تجرید الاعتقاد، ص 217.
.ابوعلی حسین بن عبدالله ابن سینا، الاشارات و التنبیهات مع الشرح، ص 20-28.